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Abstract

As humans navigate through daily life, their visual sys-
tems constantly encounter more stimuli than they can pro-
cess in real time. To overcome this issue, humans ac-
quire relevant visual information selectively and sequen-
tially using gaze fixations. Understanding the patterns of
these fixations is the topic of many cognitive studies on hu-
man visual attention. In this paper, we try to give a broad
overview about this research, starting with early work on
the role of visual conspicuity of attended photographs and
show how this research affected follow-up work. We also
show more recent gaze studies on non-static, real-world
behavior and how they contributed to current research
turning away from modeling gaze primarily based on vi-
sually conspicuity and towards task-centered models in-
stead.

1 Introduction

The visual world that humans encounter on a daily basis
is cluttered with various objects and events which causes
their visual systems to be constantly exposed to more
stimuli than they can process in real time. During scene
perception, high quality visual information is acquired
only from a limited spatial region surrounding the center
of the gaze, as the visual acuity falls off rapidly from the

gaze center into low-resolution visual surroundings. The
visual-cognitive system exploits this fact by actively con-
trolling gaze to direct fixations towards important and in-
formative regions. We move our eyes roughly three times
per second using rapid movements called “saccades”, dur-
ing which we are effectively blind. Visual information is
only acquired during “fixations”, i.e. periods of relative
gaze stability. Thus, understanding visual attention and
scene perception of humans is closely related to under-
standing gaze control (i.e. eye movements). In a review
paper, Henderson [1] listed three main reasons underlin-
ing the importance of gaze research: First, “vision is an
active process in which the viewer seeks out task-relevant
visual information (...) and virtually all animals with de-
veloped systems actively control their gaze” [2]. Second,
because “eye movements are an overt behavioral manifes-
tation of the allocation of attention in a scene, they serve
as a window into the operation of the attentional system.”
Lastly, “eye movements provide an unobtrusive, sensitive,
real time behavioral index of ongoing visual and cognitive
processing”. Consequently, a lot of the early research on
visual attention has been done by studying eye gaze of
subjects looking at static images [3].

In this survey paper, we try to give an overview of re-
cent research progress and controversy within the field of
studying visual attention. In section 2, we will show that
investigators found specific image properties such as high
spatial frequency and edge density to be more frequent
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around fixated scene patches than unfixated scene patches
and how these findings started a trend to build computa-
tional models based on these low-level image statistics,
coining the term of “visual saliency”. In section 3, we
report on work criticizing that these models do not gener-
alize well in natural, less-controlled environments. In sec-
tion 4, we give an overview of recent studies that looked
at eye gaze in real-world scenarios such as driving a car
or playing table tennis. In section 5, we introduce the idea
of task based modeling of gaze allocation and present a
recent study that uses a model based on reward maximiza-
tion and uncertainty reduction in detail. Finally, in section
6 we conclude the paper.

2 Visual Conspicuity and Saliency

2.1 Relation between Gaze and Visual Con-
spicuity

Based on the idea that early stages of visual process-
ing may exploit the characteristic structure of natural vi-
sual stimuli, Reinagel and Zador [4] conducted a study
where they recorded eye fixations of human subjects as
they viewed static black-and-white images presented on
a computer monitor. During the first 4 seconds of im-
age exposure, they extracted fovea-sized square image
patches around the subject’s center of gaze every 20 ms.
They compared these samples with randomly selected im-
age patches in terms of contrast (local standard devia-
tion within the patch) and correlation (spatial frequen-
cies). They found that subjects looked at image regions
that had high spatial contrast and regions where intensi-
ties of nearby pixels were less correlated with each other
than in regions selected at random.

A similar study was conducted by Mannan et al. [5]
who also looked at the fixations of human observers dur-
ing a brief (3 s) presentation of natural images. Instead
of comparing features directly around the fixations, they
computed global maps of contrast, spatial frequency and
edge density and compares them to fixation maps in terms
of least square errors. They find significant similarities
between the locations of eye fixations and those of edge
density image features.

2.2 Saliency Models

The findings discussed in the previous section gave rise
to the emergence of computational models that aimed to
explain attentional capture based on visual conspicuity.
The most well-known of these models is that of Itti and
Koch [6, 7]. They computed feature maps based on fea-
tures that they considerd biologically plausible, which are
intensity (luminance), color (more precisely specific dif-
ferences between color channels based on existing chro-
matic opponencies in the visual cortex [8]) and orienta-
tion (based on Gabor Filter responses at different orienta-
tions). Each feature is extracted at different spatial scales
which are normalized and combined into three conspicu-
ity maps. These maps are combined again into one, global
“saliency map” which has the purpose of representing the
conspicuity or “saliency” at every location in the visual
field by a scalar quantity. They tested their model based
on two different visual search tasks, using both synthetic
images and real images. The synthetic images, based on
classic work by Treisman and Gelade [9], always con-
tained a target (a rectangular bar) and distractors (other
bars) that differ from the target in various ways (such as
color or orientation). In the natural images, the target was,
for example, an army vehicle (which was very small in
comparison to the image size) hidden in a forest environ-
ment. They compared the total time and number of fixa-
tions it took for humans to find the target with their own
model. To simulate gaze fixations based on their saliency
map, they employed a winner-takes-all neural network in
combination with an inhibition of return policy. Basically,
the most salient point in the map is chosen as the first fix-
ation, then (after about 30-70 ms) the map is recalculated
with the area of the first fixation being oppressed, and so
on. They showed that, in the case of the synthetic images,
their model can successfully reproduce the search behav-
ior of humans as presented in the work of [9] and is also
able to find search targets in natural images.

Other researchers followed up with further empirical
evaluations of the saliency model using complex, natural
images. Parkhurst et al. [10] found a significantly greater
correlation between computed stimulus saliency and fixa-
tion locations than that expected by chance alone and also
noticed that this correlation was greatest for eye move-
ments that immediately followed the stimulus beginning.

Recently, Foulsham and Underwood [11] conducted an
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experiment that compared model-generated and experi-
mental eye movements, both in terms of the spatial loca-
tion of individual fixations and their sequential order (the
“scan path”). They had subjects look at the same image
twice, once for memorization (encoding) and then again
for recognizing. They did this to investigate possible bi-
ases resulting from the “scan path theory” [12] which ar-
gues that eye movements are generated top-down, in par-
ticular in response to a previously seen image. They found
that there was a tendency for fixations to target the most
salient regions, as selected by the Itti model, which could
not be explained by simpler models that were just biased
towards central distributions. Also, the connection be-
tween saliency and fixations did not vary signficantly with
the demands of the task (encoding or recognizing). In
terms of scan paths, they found that they were most sim-
ilar when compared between two viewings of the same
image by the same person (memorization and recognition)
and more importantly, the saliency model-predicted scan-
paths were not highly similar to human scanpaths.

2.3 Evidence against Saliency
While it is clear that the studies mentioned in the previous
section provide a proof of principle that the visual sys-
tem can select fixation targets based on visual conspicu-
ity, many researchers claim that correlations between fix-
ations and saliency alone should not be taken to imply any
causal link between features and fixation locations.

In a recent paper, Henderson et al. explicitly reject
the hypothesis that fixation locations during search tasks
in real-world scenes are primarily determined by visual
saliency [13]. In their study, they showed participants
photographs of real-world outdoor scenes and engaged
them in a visual search task by asking them to count
the number of people who appeared in each scene and
recorded eye movements. They evaluated their results
in three ways. First, they found that the Itti model per-
formed poorly in terms of predicting gaze fixations. Sec-
ond, they examined whether image properties differ on
fixated and non-fixated locations and found clear differ-
ences in contrast, intensity and edge density, which is
consistent with the studies mentioned section 2.1. How-
ever, they also compared the “semantic informativeness”
between fixated and non-fixated locations. They did this
by showing 300 selected patches (random between fixated

and non-fixated locations) to a group of seven people and
had them rate how well they thought they could determine
the overall content of the scene based on the patch. They
found that attended locations are more informative than
random locations and thus argue that any observed cor-
relations between fixation locations and image statistics
may be due to the informativeness of the fixated locations
rather than differences in the image statistics themselves.

Einhäuser et al. [14] follow the alternative hypothesis
that observers attend to “interesting” objects when look-
ing at photographs of natural scenes. In their study, sub-
jects observed various pictures in two different scenarios.
In one scenario, they were asked to rate the image on how
interesting it was, pretending to be a “judge for an art
competition”. In the other scenario, they were to decide
whether a named search target was in the scene or not. For
both scenarios and after being exposed to the picture, sub-
jects were asked to name up to five keywords to describe
the scene. They generated an “object map” to compete
with the saliency map, where they counted the number
of objects (based on the keywords for an image i named
by the observer) overlapping with pixel (x, y) in image i,
and normalized this over all observers, yielding an object
map Oi. They compared object maps and saliency maps
in terms of how well they predict eye gaze using ROC
curves and found that the object maps beat the saliency
maps in a significant fraction of the images (57:36). They
also combined both maps and found that performance is
indistinguishable from the object map alone, concluding
that saliency contributes little to fixation prediction once
objects are known. More interestingly, they assigned each
object a relative “total object saliency”, defined as the sum
of saliency map values over the object divided by the sum
across the whole image. They found that object saliency
does predict how frequently an object is recalled, meaning
that the objects mentioned the most when observers were
asked to describe the scene where those with the high-
est object saliency. They concluded that saliency maps
might predict fixations indirectly, as objects tend to be
more salient than the background, rather than because fix-
ations depend directly on saliency.
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3 Generalization to the Real-World
The notion of visual saliency (based on the model of Itti
et al. [6, 7]) became quite popular, even among studies
that look at more complex behavior and turn away from
static image viewing. However, there is a lot of discussion
about how well saliency can generalize and how much ex-
planatory power it has when looking at visual attention in
real world behavior. In a recent review paper, Tatler et al.
[15] argue that “we need to move away from this class of
model and find principles that govern gaze allocation in a
broader range of settings”. They emphasize that the orig-
inal intention of Itti was not to make a model that predicts
eye movements in complex scenes, but rather explain at-
tentional capture, and they just so happened to (reason-
ably) evaluate their model in terms of eye fixations. Tatler
et al. go on to summarize several general issues that need
to be considered when generalizing attention models from
controlled, static, lab settings to free, real-world behavior,
which we describe in the following two sections.

3.1 The Picture-viewing Paradigm
Problems naturally arise from the clear physical differ-
ences between photographs and real environments, with
photographs having a smaller dynamic range and lacking
depth cues (both motion and stereo parallax). Addition-
ally, there is a reliable bias that photographs of scenes tend
to have higher saliency towards the center, both caused
by the tendency of photographers to center the subjects
of interest, but also due to physical qualities (e.g. sky in
the upper visual field and ground pane in the lower field).
More interestingly, Tatler et al. [16] found a strong ten-
dency towards subjects making early fixations near the
center of an image irrespectively of the scene’s content.
As picture-viewing experiments often take the form of a
sudden onset of an image, followed by a few seconds of
image viewing and then a sudden offset of the image, they
argue that this effect my account for a lot of the success at-
tributed to saliency and that, in fact, the sudden onset itself
may influence the inspection behavior. In contrast, the key
goal of vision in natural behavior may be the extraction of
visual information required to complete an involved task
and artistic biases or effects caused by the sudden presen-
tation of a scene may not play a role at all.

Another issue is the assumption that saccades precisely

target the locations, i.e. information at the center of the
gaze contains the intended target of each saccade. Under
static lab conditions, this assumption is evidenced by the
observation of small, corrective saccades that occur when
saccades with a large amplitude originally “miss” the tar-
get [17]. However, in the context of more natural tasks,
such precision may be unnecessary. For example, Johans-
son et al. [18] conducted a study where they looked at
hand-eye coordination during object manipulation, where
they had subjects reach for and grasp a bar and then move
it past obstacles to press a target switch. They found that,
when moving the bar past obstacles, saccades that got the
center of vision within 3 degrees of the obstacle were suf-
ficient and were not corrected.

3.2 Videos as an Approximation of Real-
World Settings

A growing number of studies are starting to use videos
to overcome some of the problems mentioned in the pre-
vious section and because video allows the evaluation of
dynamic temporal features.

Itti extended his original model [6, 7] with motion cues
and conducted a study where he had eight subjects look
at a heterogeneous collection of 50 video clips, including
television ads, music videos, sport videos and clips from
video games [19]. In addition to existing low-level fea-
tures (color, intensity, orientation), they added temporal
flicker features as well as four oriented motion energies.
Temporal flicker essentially describes the pixel-wise in-
tensity contrast between consecutive frames and motion
energies describe intensity contrasts resulting from shift-
ing the frame one pixel to the left/right/top/bottom. Con-
sidering the temporal nature of the data, they measured
the saliency around the location of the future endpoint of
a saccade at the moment when that saccade began and
compared results which uniformly distributed random lo-
cations. They found that motion and temporal change
were stronger predictors of human saccades than color,
intensity and orientations features, with the best predictor
being all features combined.

While Itti’s work shows that dynamic temporal features
can be predictors of eye movements, other more recent
work questions how well the tested videos generalize to
natural behaviors. Hirose et al. looked at the effects of
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editorial cuts, as they are common in many movie-like
sequences [20]. They created a scene where the camera
follows an actor walking through a room and passing a
desk with various items on it, followed by a cut showing
the desk in more detail. They changed different object
categories (color of an item on the desk, spatial arrange-
ment of items, etc.) between the cut and examined eye
movement behavior and recognition memory. They found
that there are discrepancies between eye movement (ocu-
lomotor) behavior and memorial behavior in comparison
to normal scene perception, with subjects usually recall-
ing object properties as seen from the most recent camera
viewpoint. Furthermore, irregularities in the spatial ar-
rangement of items between cuts were significantly less
noticed than changes in object color or type, suggesting
that spatial information is represented differently from
other object qualities when looking at videos with cuts
between different viewpoints.

Dorr et al. [21] compared the variability of eye move-
ments when viewing videos of dynamic natural scenes
with Hollywood-style movie trailers containing cuts and
other artistic influences. They found that gaze patterns
while viewing professionally cut Hollywood trailers were
very different from natural movies. In particular, eye
movements during movie trailers were much more similar
among different subjects and contained a much stronger
bias for the center of the screen. The authors took this
to explicitly highlight the importance of studying vision
under naturalistic conditions, as eye movements are pre-
sumably optimized to deal with natural scenes.

4 Real-World Behavior Studies
In this section, we present examples of studies that looked
at visual attention during real-world scenarios, mean-
ing scenarios that are not constrained to static photo or
video viewing, but involve subjects engaged in free head
and body movements. These studies are becoming more
and more popular, mostly driven by technological ad-
vances that make head-mounted eye-tracking gear prac-
ticable. This gear (e.g. Tobii or SMI) usually consists of
a lightweight, head-mounted, egocentric camera approxi-
mating the visual field of the person wearing it, in combi-
nation with a second, infrared camera that keeps track of
the person’s pupil.

We will first look at studies with tasks specifically
designed to observe the coordination of eyes, head and
hands and then at studies that document eye gaze in real-
world activities.

4.1 Coordination of Eyes, Head and Hands
Pelz et al. looked at the temporal coordination of eye,
head and hand movements while subjects performed a
simple block-moving task, where they were exposed to
three lego boards [22]. One board contained at target
model consisting of eight blocks of different color in a
specific spatial configuration. A second board contained
a set of 12 “resource blocks”. Finally, the third board
was empty. The subjects were told to recreate the tar-
get model from the first board on the third, empty board
as fast as possible, using the blocks from the resource
board. Thus, the task involved fixations to gather infor-
mation about the blocks and visually guided hand move-
ments to manipulate them. They found “rhythmic pat-
terns of eye, head and hand movements in a fixed tem-
poral sequence or coordinative structure.” They further
observed that hand movements towards a block were de-
layed until the eyes were available for guidance and that
head movements were the most flexible among subjects
and frequently diverged from gaze change, appearing in-
stead to be linked to the hand trajectories. They concluded
that the coordination of eye, hand, head and gaze changes
follows a synergistic binding rather than an obligatory one
and that these temporary synergies simplify the coordina-
tion problem by reducing the number of control variables.

As briefly mentioned in section 3.1, Johansson et al.
[18] analyzed the coordination between gaze behavior and
fingertip movements while subjects manipulated a test ob-
ject. They built an apparatus which let them track finger
movements and eye gaze patterns while subjects reached
for a bar, moved it past obstacles to touch a target switch,
and finally moved the bar back towards its original posi-
tion. They observed that subjects almost exclusively fix-
ated “landmarks” which were critical for the control of the
task. Those landmarks involved contact points between
fingers and bar, the target switch, as well as the obsta-
cle. However, subjects never fixated on the hand or the
moving bar. Instead, gaze was temporally leading hand
and bar movements, such that the instant that gaze ex-
ited a given landmark coincided with a kinematic event
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at the landmark. They concluded that gaze supports hand
movement planning by marking key positions to which
the hand is subsequently directed and that the saliency (in
a more general way) of gaze targets arises from the func-
tional requirements of the task.

4.2 Real-World Activities
In this section, we present examples from studies that
looked at eye movements and how they contribute in the
organization of real-life activities such as walking, driv-
ing, ball sports or common indoor activities like making
tea. We also want to point out that an extensive, in-depth
review in this area was recently done by Land [23].

4.2.1 Walking

Patler and Vickers studied how far people look ahead
when walking across a “difficult” terrain [24]. To do so,
they instructed subjects to step on a series of footprints
that were regularly and irregularly spaced over a 10 meter
distance. They discovered two main types of gaze fixa-
tions: footprint fixation; and travel fixation where gaze
is stable and thus “traveling” with the speed of the body.
They found that when participants fixated on the footprint
in front of them, on average, they looked two steps ahead
and did so about 800-1,000 ms before stepping on the tar-
get area. They concluded that this would allow them suffi-
cient time to successfully modify their gait patterns. They
further found that most of the travel time (over 50%) was
spent on travel fixations and hypothesized that this behav-
ior facilitates the acquisition of both environmental and
self-motion information from the optical flow generated
by the self-motion.

Hollands et al. looked at the role of eye and head
movements when subjects changed direction while walk-
ing [25]. They had subjects walk an even path and gave
either predefined spots to change directions or gave cues
by the onset of a light in the direction of the new path.
They found that every turn was accompanied by a saccade
to the new direction in combination with a head move-
ment, such that eye-head combination brought head and
gaze into line with the new direction as the body turn was
being made. They hypothesized that the pre-alignment of
the head provides a new reference frame that can be uti-
lized to control the rest of the body.

4.2.2 Driving and Steering

Land and Lee [26] researched where people look when
they steer a car by simultaneously recording the driver’s
gaze direction and the steering-wheel angle. They used
a tortuous, one-way street to ensure the need of planned
steering while avoiding distractions of other traffic as far
as possible. They found that drivers spent most of the
time looking at what they call “tangent point”, meaning
the point inside a bend that causes the driver’s line of
sight to be tangential to the inner road edge. As a re-
sult of this, there is a clear correlation between gaze angle
and steering angle, where the peak of the cross-correlation
was found at a delay of about 0.8 s between changes in
gaze angle and changes in steering angle.

4.2.3 Ball sports

Land and Furneaux looked, among other activities, at the
gaze patterns of ordinary people playing table tennis [27].
They found that players generally do keep their “eyes on
the ball”. However, in crucial moments, they perform an-
ticipatory saccades to where they expect the ball to be.
This mainly applies to the ball bouncing off the table on
either side, where players roughly fixate the location at
where the ball will bounce about 400 ms in advance. They
conclude that the reason players anticipate the bounce is
that location and timing of the bounce are crucial in the
formulation of the return shot. More importantly, they
claim that, until the bounce, the trajectory of the ball as
seen by the receiver is ambiguous as stereopsis processing
may not be fast enough to contribute useful depth signals.

In a somewhat similar study, Land and McLeod looked
at cricket [28]. Here, one player (the bowler) throws the
ball towards the other player (the batsman) in a way that it
bounces off the ground exactly one time before the bats-
man tries to hit it. They found that the “batsmen’s eye
movements monitor the moment the ball is released, make
a predictive saccade to the place where they expect it to
hit the ground, wait for it to bounce, and follow its tra-
jectory for 100-200 ms after the bounce.” Similar to table
tennis, they concluded that the information the batsman
needs to judge where and when the ball will reach his bat
is mostly given by time and place of the bounce. Worse
players had a higher latency for their predictive saccade
and consequently missed balls that were too fast.
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4.2.4 Indoor everyday activities

Land et al. [29] looked at eye gaze data of three subjects
during the task of making tea in a kitchen environment.
The task involved picking up the kettle, walking across
the kitchen to the sink, filling the kettle with water, walk-
ing back and so on. They found a lot of similarities among
subjects both in the scan path and the number of fixations
dedicated to each subtask. They further conclude that sac-
cades are made almost exclusively towards objects that
are directly involved in the subtask despite the presence
of other visually salient objects. Also, the eyes deal with
one object at a time, which may involve a number of fix-
ations on different parts of the objects but no alternating
fixations between objects.

Similar results in terms of almost all fixations target-
ing task-relevant objects were found by Land and Hay-
hoe [30], who looked at subjects preparing sandwiches
while sitting on a table. They also found that eyes usu-
ally reached the next temporally relevant object before the
first sign of manipulative action, indicating that eye move-
ments lead motor actions.

5 Modeling the Role of Task in Gaze
Control

The results mentioned in the previous section show that
visual attention in real-world behavior is strongly task-
related and cannot be properly modeled in terms of visual
conspicuity clues which are the basis of bottom-up mod-
els such as Itti’s model of visual saliency [6, 7]. Conse-
quently, a lot of researchers such as Tatler et al. explicitly
ask for a “reinterpretation of salience” [15]. Indeed, a
lot of attempts to “generalize” static saliency models are
based on modifying the existing saliency frameworks in a
way such that the core bottom-up mode of looking is mod-
ified by various high-level constraints. For instance, Tor-
ralba et al. introduce a model based on a Bayesian frame-
work that combines saliency with global, scene-centered
features [31]. Essentially, their model extends the Itti
model with semantic priors to improve search task results
in static, real world scenes. When looking at a kitchen
scene and searching for a mug, the model favors regions
around the countertop while searching for a painting fa-
vors regions along the walls. However, Tatler et al. argue

that the assumptions at the heart of such studies are still
problematic as the principles that might be expected from
picture-viewing studies simply do not match the princi-
ples that are found across many instances of natural vi-
sion. Taking the table tennis study [27] as a prominent
example, it is indubitable that the regions that subjects
fixated on in anticipation of the ball have absolutely no
difference in visual saliency compared to their surround-
ings, but are only fixated because of their relevance for the
task of hitting the ball. Thus, Tatler, Ballard et al. [15, 32]
stress the importance of future research on frameworks
that model the role of task in the control of gaze.

5.1 Reward-based models
One proposed way of modeling tasks are reward-based
systems of reinforcement learning, where visual informa-
tion acquired during fixations can be thought of as a “sec-
ondary reward which can mediate learning of gaze pat-
terns by virtue of its ultimate significance for adaptions
and survival” [15]. This idea is also supported by recent
neuroscientific findings that show that the brain’s inter-
nal reward mechanisms are closely linked to the neural
machinery controlling eye movements and that saccade-
related areas in the cortex exhibit sensitivity to reward
[33, 34].

Gaze models that use reward as central components are
rare and current research is far from a state where compu-
tational models can explain eye movements across mul-
tiple instances of natural behavior. However, there are
successful studies in this area with a prominent example
being the work of Sprague, Ballard and Robinson [35].
For their study, they developed a virtual reality graphics
environment, including a simulated human agent named
“Walter”. Walter successfully learned to allocate gaze to
avoid obstacles and control his walking direction. His
behavior was based on three microbehaviors (collision
avoidance, sidewalk navigation, litter collection), each of
which was linked to a visual routine that created the corre-
sponding state information. Litter was signaled by purple
objects, which had to be “picked up” (by colliding with
them), so potential litter had to be isolated as being of the
right color and also nearby. While real humans would use
stereo, parallax depth, etc. to obtain depth information,
the model directly sampled depth from the scene graph.
Sidewalk navigation uses color information to label pixels
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that border both sidewalk and grass regions and fit a line
to estimate the edge of the sidewalk. Finally, collision de-
tection worked similar to litter collection, with obstacles
being blue objects. Each of those three tasks/behaviors
is associated with a reward value. Their model assumes
that only one location (similar to the human viewpoint)
can be attended at a time and that the uncertainty about
unattended tasks grows over time. The decision about
which task to attend is based on the expected reward of
switching attention and is evaluated every 300 ms, ap-
proximating 3 saccades/fixations per second. Movements
are made to maximize reward by reducing the uncertainty
that could arise as a result of suboptimal actions. To eval-
uate Walter’s behavior, they introduced human subjects
to the virtual environment by having them wear head-
mounted binocular displays that contained eye tracking
capabilities. They found similar patterns between Wal-
ter and humans in the sense that the relative proportion of
fixations on locations relevant to each of the three tasks
was the same. One discrepancy was that humans used
fewer sidewalk fixations than suggested by the model.
The authors explanation for this is that humans, unlike the
model, where able to use litter/obstacle fixations for two
routines. As both litter and obstacles were only located
within the sidewalk, seeing an unobstructed litter implies
that you can walk towards it knowing you are still on the
sidewalk.

6 Conclusion
We have shown that early investigations of visual atten-
tion have been largely driven by studies of static picture
viewing. Different image statistics between visually at-
tended patches and control patches lead to the develop-
ment of models using visual conspicuity to predict human
gaze, most notably the visual saliency model of Itti et al.
[6, 7]. However, a lot of researchers claim that correlation
between gaze patterns and image conspicuity does not im-
ply causality and that the predictiveness of saliency, even
in static scene-viewing scenarios is very task-dependent
(e.g. search versus recall). Some researchers, such as
Handerson, even go as far as to say that visual saliency
does not account for eye movements at all [13].

We also introduced studies that looked at eye gaze dur-
ing real-life activities, where subjects were allowed to

move freely while following activities such as walking,
driving or making tea. All of these studies have in com-
mon that subjects seemed to focus largely on locations
that contained crucial information for the task at hand
with gaze taking a “planning role” for hand manipulation
and other body movements. On the other hand, visual
saliency did not seem to contribute a lot towards the deci-
sion of which visual information to attend to.

Consequently, researchers (Tatler, Hayhoe, Land, Bal-
lard [15, 32]) started criticizing the trend of using mod-
els of low level saliency that are modified by high level
constraints and argue for future research to focus on task-
centered models on the basis of reward maximization and
uncertainty reduction.

We largely agree with this idea, while emphasizing
that developing gaze allocation models that can gener-
alize across the countless instances of natural behavior
is a verity difficult goal. We hypothesize that this prob-
lem played a large roll in the fame of bottom-up mod-
els, as one thing that all real-world activities have in com-
mon is the presence of low level visual stimuli. However,
there is overwhelming evidence that visual saliency sim-
ply plays little to no role during visual attention in the
real world. Recent success shows that gaze behavior in a
free-moving, real world task can adequately be modeled
with relatively simple, reward based models [35]. Ad-
ditionally, vision researchers do not necessarily have to
reinvent the wheel and may benefit from existing work
on reinforcement learning and reward based models that
have been intensively studied in the robotics and artificial
intelligence community.
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