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" We are interested in automatically analyzing complex and dynamic interactions from first-person views. Why Egocentric?

" To do this, we need to robustly track hands and distinguish hand types (my hands vs. your hands or left vs. right hands). Wearable cameras are catching on, with many new

" We present two projects related to analyzing hands in first-person video. One considers “clean” video from lab settings, using weak (but consumer devices on the market. Hands appear
fast) appearance models with spatial constraints of first-person views to distinguish hands. The second detects, distinguishes and often and prominently in first-person video, and their
segments hands in real-world interactions with strong (deep) appearance models that explicitly capture hand types. pose gives important cues about the camera wearer.

Naturalistic Activities Project

1. Motivation

Lab-based Attention Project

1. Motivation

We study egocentric hand detection, identification,

and segmentation of interacting people in realistic

settings.

" Evaluate the potential of deep hand appearance
models to detect different hand poses and types.

" Analyze how informative hand pose and location

can be for first-person activity recognition.

" We use head-mounted cameras to study how
toddlers interact with parents, including how they
coordinate hands and head turns.

= We need to detect, disambiguate, and track all
hands in the toddler’s view.

= We apply probabilistic models of joint head and
hand motion in egocentric video.
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2. Challenges 2. Data Collection

4. Experiments

Recorded synchronized first-person video from
interacting subjects, using two Google Glasses.

= Four different actors, four activities, at three
locations, for 4x4x3 = 48 unique videos.

" Annotated 4,800 random frames with pixel-level

ground truth for 15,053 hands.

" We tested on 5 parent-child pairs (31 min of video).
" We evaluated against 2,400 manually-annotated
frames (~1 frame/second).

5. Results

éHead motion makes the child’s view extremely dynamic: hands varyé
drastically in size, shape, and orientation, and hands come in and out of
_view and overlap frequently. ;

Use our strong detections to
initialize GrabCut, modified to
use local color models for
hands and background.

Yields state-of-the-art results.

Given an egocentric video
sequence I = {I',... I}
Estimate location of parts
P = {yr, yh, yl, mr, ml}

in each frame as latent

: I 1<i<n | gResults with estimated positions (dots) and ground truth boxes. Red: yourg
variables { P },p SR and ; _head, blue/green: your left/right hand, magenta/cyan: my left/right hand.
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We apply convolutional neural networks, using
a lightweight region proposal technique that
samples based on skin color and spatial location. estimated using hand pose and
= Qur region proposals yielded better coverage location alone.
than other methods like “selective search” or e |
“objectness.’ TopcTo redt actutes bosed n s, we ol
= CNN is trained for a 5-way classification task everything but hands is masked out. Bottom: | ..
netween own left hand, own right hand, other Accuracy versus temporal window of vigeo.
eft hand, other right hand, and background.
= Different dataset splits show that performance More Information:
generalizes across actors/activities/locations.
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fully-connected graphical model. Viola-Jones). Right: Various |random (skin) | 273 4.3 72.0
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Model temporal constraints with edges between e | olemethod | 684 19.1 32.7
parts in adjacent frames and global shift variables.
Model out-of-view parts with a special state whose See Full Papers for More!

probability is integrated over off-frame spatial This Hand Is My Hand: A Probabilistic Approach to Hand
constraints Disambiguation in Egocentric Video, CVPR Workshops 2014.

. . . Detecting Hands in Children’s Egocentric Views to Understand Embodied
Solve using Gibbs Samplmg- Attention during Social Interaction, CogSci 2014.

Activities can be successfully
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Dataset will be published online:
vision.soic.indiana.edu/egohands
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