Tracking Hands of Interacting People in Egocentric Video

Sven Bambach, Stefan Lee, David Crandall, School of Informatics and Computing, Indiana University **John Franchak, Chen Yu**, Department of Psychological and Brain Sciences, Indiana University

- We are interested in automatically analyzing complex and dynamic interactions from first-person views.
- To do this, we need to robustly track hands and distinguish hand types (my hands vs. your hands or left vs. right hands).
- We present two projects related to analyzing hands in first-person video. One considers "clean" video from lab settings, using weak (but fast) appearance models with spatial constraints of first-person views to distinguish hands. The second detects, distinguishes and segments hands in real-world interactions with strong (deep) appearance models that explicitly capture hand types.

Why Egocentric?

Wearable cameras are catching on, with many new consumer devices on the market. Hands appear often and prominently in first-person video, and their pose gives important cues about the camera wearer.

Lab-based Attention Project

1. Motivation

- We use head-mounted cameras to study how toddlers interact with parents, including how they coordinate hands and head turns.
- We need to detect, disambiguate, and track all hands in the toddler's view.
- We apply probabilistic models of joint head and hand motion in egocentric video.

head camera your right hand hand hand hand hand hand

2. Challenges

Head motion makes the child's view extremely dynamic: hands vary drastically in size, shape, and orientation, and hands come in and out of view and overlap frequently.

3. Modeling Egocentric Interactions

- **Given** an egocentric video sequence $I = \{I^1, \dots, I^n\}$
- Estimate location of parts $P = \{yr, yh, yl, mr, ml\}$ in each frame as latent variables $\{L_p^i\}_{p \in P}^{1 \le i \le n}$, and global shift G^i between consecutive frames caused

by head motion.

Graphical model for a 2-frame video.

- Use weak skin, head, arm appearance models to generate (noisy) likelihood maps in each frame.
- Model spatial constraints on hand position with a fully-connected graphical model.
- Model temporal constraints with edges between parts in adjacent frames and global shift variables.
- Model out-of-view parts with a special state whose probability is integrated over off-frame spatial constraints.
- Solve using Gibbs sampling.

4. Experiments

- We tested on **5 parent-child pairs** (31 min of video).
- We evaluated against 2,400 manually-annotated frames (~1 frame/second).

5. Results

Results with estimated positions (dots) and ground truth boxes. Red: your head, blue/green: your left/right hand, magenta/cyan: my left/right hand.

Overall							70 Ferrect	Disallibiguation
Accuracy	R. Hand	L. Hand	R. Hand	L. Hand	Head	Head (V-J)	Frames	Error Rate
68.4	70.7	61.2	63.6	64.5	82.1	72.4	19.1	32.7
Top : Detection rates for				Metho	d	Overall Accuracy	% Perfect Frames	Disambiguation Error Rate
hands and head (compared to Viola-Jones). Right: Various baselines.			randon randon	n n (skin)	17.0 27.3	0.1 4.3	95.1 72.0	
			skin clu	isters	58.1 68.4	14.4 19.1	36.0 32.7	

See Full Papers for More!

- This Hand Is My Hand: A Probabilistic Approach to Hand Disambiguation in Egocentric Video, CVPR Workshops 2014.
- Detecting Hands in Children's Egocentric Views to Understand Embodied
 Attention during Social Interaction, CogSci 2014.

Naturalistic Activities Project

1. Motivation

- We study egocentric hand detection, identification, and segmentation of interacting people in realistic settings.
- Evaluate the potential of deep hand appearance models to detect different hand poses and types.
- Analyze how informative hand pose and location can be for first-person activity recognition.

2. Data Collection

- Recorded synchronized first-person video from interacting subjects, using two Google Glasses.
- Four different actors, four activities, at three locations, for 4x4x3 = 48 unique videos.
- Annotated 4,800 random frames with pixel-level ground truth for 15,053 hands.

Sample frames from our dataset. **Left**: Ground truth hand masks superimposed on sample frames, where colors indicate hand types. **Right:** Random subset of cropped hands according to ground truth segmentations.

3. Hand Detection

- We apply convolutional neural networks, using a lightweight region proposal technique that samples based on skin color and spatial location.
- Our region proposals yielded better coverage than other methods like "selective search" or "objectness."
- CNN is trained for a 5-way classification task between own left hand, own right hand, other left hand, other right hand, and background.
- Different dataset splits show that performance generalizes across actors/activities/locations.

Precision-recall for hand detection. **Left:** Results compared with other region-proposal methods. **Right:** Results for detecting four different hand types.

Random detection results of own left, own right, other left and other right..

4. Segmenting Hands

- Use our strong detections to initialize GrabCut, modified to use local color models for hands and background.
- Yields state-of-the-art results.

Top: Segmentation examples on random frames. **Bottom:** Intersection/union results.

	Method	Own l	Hands	Other	Averege	
		Left	Right	Left	Right	Average
	Li et al.	0.395	0.478	0.534	0.505	0.478
	Ours	0.515	0.579	0.560	0.569	0.556

5. Activity Recognition

 Activities can be successfully estimated using hand pose and location alone.

Top: To predict activities based on hands, we train and test a CNN with video frames in which everything but hands is masked out. **Bottom:** Accuracy versus temporal window of video.

More Information:

Dataset will be published online: vision.soic.indiana.edu/egohands

