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Abstract

Work in Cognitive Science has shown that infants are amazingly efficient
at the complex task of learning to recognize objects in a world full of vi-
sual clutter. In fact, many computer vision researchers have drawn analo-
gies between that process and the impressive recent performance of deep
learning. This connection raises the exciting potential that better under-
standing human learning may give us insight into how to improve deep
learning, while deep learning may give us new tools to model and under-
stand how humans learn. We consider a first step towards the latter, in
particular using deep learning to test the hypothesis that one reason tod-
dlers are able to learn so efficiently is that they create high-quality visual
training data for themselves by actively manipulating objects and thus
self-selecting ideal object views for visual learning. We test this idea by
collecting egocentric video data of free toy play between toddlers and par-
ents, and then train separate Convolutional Neural Networks based on the
toddlers’ views and the parents’ views. Our results show that the egocen-
tric data collected by parents and toddlers have different properties, and
that CNNs learn better models using the toddler than the parent views.

1 Introduction

Object recognition is of fundamental importance to humans, whose ev-
eryday lives rely on identifying a large variety of visual objects. A vex-
ing question for cognitive scientists is how toddlers are able to learn to
identify objects so quickly in a visually noisy and dynamic world where
objects are often encountered under seemingly sub-optimal conditions.
Many previous studies on early visual object recognition focus on ex-
posing young visual learners to stimuli displayed on a computer screen.
While these controlled experimental paradigms are powerful, we also
know that these paradigms are very different from young children’s ev-
eryday learning experiences: active toddlers do not just passively perceive
visual information but instead actively manipulate objects, thereby self-
selecting many views of the same objects [3].

Meanwhile, in computer vision, many researchers have noted the con-
ceptual connection between this process of infant learning and recent deep
learning-based algorithmic techniques that are able to learn surprisingly
effective visual models from large, often noisy visual datasets with little
prior information. Although the analogy between these two is probably
largely conceptual (as opposed to actually occuring through the same me-
chanical processes), it nevertheless raises the interesting possibility that
human learning may give us insight into how to improve deep learning,
and that deep learning algorithms could give us new tools for understand-
ing and modeling human learning.

This abstract is a summary of a recent paper [1] in which we use deep
learning to test a cognitive science hypothesis: toddlers’ active viewing
of objects may create high-quality training data for visual object recogni-
tion. To do this, we used head-mounted cameras to collect video data in
which parents and children were asked to jointly play with a set of toys.
We then trained two separate Convolutional Neural Networks (CNNs) [2]
with first-person data from the infant view and parent view, and tested
them on a separate set of images taken in a well-controlled environment.
The results show that the CNNs perform better (in multiple simulation
conditions) when trained with the toddlers’ data than with the parents’,
suggesting that toddlers’ pattern of interaction with objects is especially
well suited to generating better training data. To the best of our knowl-
edge, this is the first study to collect and use egocentric video in everyday
contexts and demonstrate a working learning system taking advantage of

(a) Toddler view (b) Parent view

(c) All toy cars seen by toddlers (d) All toy cars seen by parents

Figure 1: (a-b) First-person video frames captured during joint child-
parent play from (a) toddler and (b) parent views. (c-d) Views of a toy
car as seen by (c) toddlers and (d) parents, showing the diversity of toddler
views. (Objects shown to scale; colored boxes show field of view size.)
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(b) Size of toy objects in the field of view
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(c) Differences in visual diversity accross toy instances

Figure 2: Comparison of objects in the fields of view of toddlers and
parents, in terms of (a) number and (b) size of objects. (c) Difference
between toddlers and parents in the visual diversity for each of the toys.
Positive values indicate higher diversity for toddlers.

object view self-selection by active toddlers for visual object recognition.

2 Data Collection

To test our hypotheses and models, we collected two types of image data,
one for training and one for testing. For the training data, we used head-
mounted cameras to capture first-person video of toddlers and parents as
they jointly played with a set of 24 toys in a naturalistic, unconstrained
setting (Figure 1(a-b)). For the test data, we collected a controlled dataset
in which we photographed the same objects, but against a clean back-
ground and from a systematic set of canonical viewpoints (Figure 3(a)).

Training Data (First-Person)
We invited 10 child-parent pairs (4 boys, 6 girls, mean age 22.6 mos.)

into our play room and equipped both with head-mounted cameras. On
average, we captured about 8 minutes of video (720×1280px, 30Hz) per
subject. After temporally synchronizing parent and child videos, we man-



(a) Controlled toy images
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(b) Controlled data

Occluded Data
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(c) Occluded data

Grayscale Data
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(d) Grayscale data

Occ. Grayscale
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(e) Occluded grayscale data

Figure 3: (a) Samples from the test data. Each of 24 toys (red) was photographed from 8 viewpoints (green), and each image was further rotated 8
times (blue) and cropped at lower zoom levels (cyan) to add further variation. (b-e) CNN classification accuracies trained with first-person images
from toddlers (blue) and parents (orange) tested on controlled image data of the same objects. Bars show standard errors across 10 trained networks.

ually annotated the location (bounding box) of each toy in view of each
subject (for 1 frame every 5 sec.). Overall we annotated 9,646 toy in-
stances from the child views, and 11,313 instances from the parent views.
Figure 1(c-d) shows all annotated instances of a toy car as an example.

Testing Data (Third-Person)
We also created a separate test set of the same 24 toy objects. The

goal of this test data was to have a large variety of clean, systematically-
collected, unobstructed third-person views for each toy, to serve as a view-
independent and therefore objective way to evaluate the performance of
visual object recognition. We captured 8 photos from each toy, one from
each 45◦ rotation around its vertical axis. Sample images from every toy
are shown inside the red box in Figure 3(a). To add further variation,
we rotated (8×) and rescaled (2×) each photo, resulting in a test set of
8×8×2 = 128 images for each toy and 3,072 images total.

3 Study 1: Quantifying and Comparing Object
Properties in Egocentric Views

During joint play, toddlers and parents generate many instances of visual
objects within their self-selected fields of view. Our first study quantified
and compared properties of object appearance across the two views.

Number and Sizes of Objects in View
Figure 2(a) presents histograms showing the number of objects that

appear simultaneously in the field of view. Toddlers have a larger fraction
of frames (16.3%) with only 1-4 objects compared to parents (11.3%).
Conversely, parents are more likely to have most objects in view at once.
We also investigated object size within the fields of view. Figure 2(b)
shows that toddlers are much more likely to have toys prominently in view
(object bounding box >10% of field of view) while parents are much more
likely to see small objects (≤2% FOV).

Variation in Visual Object Appearance
Finally, we aim to quantify the visual diversity across toy instances

among the two different views. We represent each instance into a fixed-
length 300-d vector, and then compute the pixelwise mean squared error
(MSE) distance between all pairs of instances for each object and subject.
As shown in Figure 2(c), the mean MSE for each toy between toddler and
parent views shows greater diversity for toddlers in 20 of the 24 toys.

4 Study 2: Object Recognition with Deep Models

We investigate how well a CNN trained with real-world toy instances (as
captured during our joint play experiments) recognizes the same 24 ob-
jects in a separate, controlled testing environment. We do not claim that a
CNN actually emulates visual object learning in toddlers, but are instead
interested in CNNs as proxies for ideal learners. Given the differences be-
tween toddler and parent views summarized in Study 1, we hypothesize
that the toddler data captures a richer representation of each object, lead-
ing to better classification performance on the controlled test data. All
experiments use AlexNet [2], fine-tuned from pre-trained weights.

Simulation 1: CNNs Learn from the Training Data
Before we experiment with controlled test images, we are interested

in evaluating the learnability of the first-person data. Training two net-
works (one with the toddler data and one with the parent data) with a
6-fold cross validation split yielded an average test accuracy of 89.9% for
the toddler views and 93.1% for the parent views (4.2% random baseline).

Simulation 2: Using Testing Data from a Third-Person View
We investigate how well learned concepts from the first-person train-

ing data transfer to the clean test data. We trained 10 CNNs on the toddler
training data and a separate set of 10 CNNs on the adult training data,
and then tested both with the same controlled tes data described above
(3,072 images). As shown in Figure 3(b), the toddler networks achieve
higher accuracy by 6.3 percentage points. Figure 3(b) also compares the
distribution of mean accuracies for each object, showing that the child net-
works outperform for 16 out of the 24 toys, indicating that the differences
in overall accuracy are not caused by a minority of classes.

Simulation 3: Recognizing Occluded Objects
Another interesting question is how well the toddler and parent views

allow the trained networks to deal with occlusion. To test this, we added
occlusion to each test image by systematically blocking different image
quadrants (resulting in 14 different occlusions per image). Figure 3(c)
shows results from the 2×10 networks of Simulation 2 on the occluded
data, showing that toddler networks retain better mean accuracy.

Simulation 4: The Effect of Color Information
The performance difference on the controlled images might be be-

cause one set of networks simply relies more on color information. To
examine this idea, we repeated all experiments with grayscale images.
First, we investigate if lack of color increases the difficulty to learn from
the two datasets. The average test accuracy across splits decreased to
76.9% for toddler and to 83.1% for parent networks, a realitively small
drop. Next, we repeated Simulations 2 and 3 and train two sets of 10
networks, one with grayscale toddler images and the other with grayscale
parent images, and test on grayscale testing set images. Figure 3(d-e)
shows that toddler again outperform parent networks, both for the non-
occluded and the occluded testing data.

5 Summary and Future Work

We collected first-person video data of free toy play between toddler-
parent dyads, and used it to train state-of-the-art machine learning models
(CNNs). Our results showed that (1) CNNs were able to learn object
models of the toys in this first-person data; (2) these models could gen-
eralize and recognize the same toys in a different context with different
viewpoints; and (3) the visual data collected by toddlers is of particu-
larly high quality as models trained with toddler data consistently outper-
formed those trained with parent data in multiple simulation conditions.
In addition, we believe this to be a first step towards the exciting paradigm
of using deep learning techniques to test hypotheses in cognitive science.
Our future work will focus on further understanding the factors that may
account for the observed performance differences.
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