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Abstract

Wearable cameras are becoming practical and inexpen-
sive, creating new applications and opportunities including
novel studies of social interaction and human development.
Recent work has focused on identifying the camera wearer’s
hands in egocentric video, as a first step towards more com-
plex analysis. Here we study how to disambiguate and track
not only the observer’s hands but also those of social part-
ners. We present a probabilistic framework for modeling
paired interactions that incorporates the spatial, temporal,
and appearance constraints inherent in egocentric video.
We test our approach on a dataset taken from a psychology
study, consisting of 30 minutes of first-person video from
five different child-parent subject pairs.

1. Introduction

Head-mounted cameras capture video that is fundamen-
tally different from static cameras, recording an approxima-
tion of a person’s field of view during everyday life. This
technology is creating new applications in areas like life-
logging [13], healthcare [3], and security [15]. In addition,
head-mounted cameras are being used for psychology re-
search [1, 7] by recording fine-grained information about
people’s activities and interactions.

Hands are perhaps the most frequent objects in egocen-
tric video, and are arguably also the most important, since
they are the primary way that humans physically interact
with the world. In fact, most work in egocentric activity
recognition assumes that activities can be characterized by
the in-hand manipulation of certain objects [4, | I]. Other
work on egocentric hand detection is motivated by the idea
that hands are important for understanding complex object
manipulations, gestures, and motor skills [9, 10, 14].

Most of this work assumes that only the camera wearer’s
hands are visible in the scene, even though real-world ego-
centric video includes frequent interactions with other peo-
ple [5]. Recognizing gestures, handled objects, and activ-
ities in practice will thus require distinguishing the cam-
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Figure 1. A mother and child play while both wear head-mounted
cameras. To help investigate how different hands help capture the
child’s attention, we study hand tracking and disambiguation in
egocentric video, and propose a probabilistic model that incorpo-
rates appearance, spatial, and temporal cues.

era owner’s hands from others that occur in the scene. We
are especially motivated by psychology experiments that
use head-mounted cameras to study how young children
and adults interact with one another, and how children co-
ordinate their hands and gaze in order to manipulate ob-
jects [1,6,7,12]. In our experiments, for example, a parent
and child play with toys on a table and frequently point to,
reach for, and exchange toys with their hands (Figure 2).
The child’s view is extremely dynamic: the hands of both
the child and parent frequently disappear and reappear or
are partly occluded. Manually labeling hand positions in
these large-scale datasets is slow and tedious, so a main
motivation of our work is to develop a technique that can
perform the labeling automatically.

In this extended abstract, we describe an approach for
detecting and distinguishing hands in egocentric videos of
interacting people, and apply it to differentiating between
the left and right hands of the child (the camera wearer),
as well as the left and right hands of the parent (Figure 1)
in each frame of a video. This work was detailed in two
recent publications at egocentric vision [8] and cognitive
science [2] venues, but we believe it may be interesting to
the HANDS community as well.



Figure 2. Some sample images from the egocentric videos that
were used in our experiments. The child’s view is very dynamic;
hands come in and out of view or overlap very frequently.

2. Methodology

Idea. We propose a graphical model framework that en-
codes key spatiotemporal constraints inherent to the ego-
centric perspective. These constraints are quite intuitive;
for example, given that we see the scene through the eyes of
the child, we expect the child’s left hand to enter the child’s
view predominantly from the lower left and the right hand to
enter from the lower right. In addition to these absolute spa-
tial assumptions, one can also use relative spatial statistics:
we generally expect the child’s left hand to be to the left
of the right hand, and vice-versa. Similar assumptions can
be made for the parent. Since the parent usually faces the
egocentric observer, the parent’s right hand usually occu-
pies the left side of the child’s field of view and the parent’s
left hand is on the right.

Formal Overview. We give the details of our formulation
in [8], but sketch out the major details here. Given an ego-
centric video sequence with n frames, I = {I*,..., 1"}, of
an interaction between two subjects, we would like to es-
timate the locations of the observer’s hands (my left, my
right), the other person’s hands (your left, your right), and
the other person’s head (your head) throughout the video.
We encode these parts P = {ml, mr,yl,yr,yh} in each
frame as latent variables {L; ;g?" We also explicitly
model the global shift (caused by head motion) between to
frames as the latent variables G°.

A graphical depiction of our model for a two frame
video example is shown in Figure 3. We model spatial
constraints between hand positions with a fully-connected
graph within each frame (black edges). We further model
temporal smoothness with (green) edges between corre-
sponding parts in adjacent frames. Blue edges that connect
parts in adjacent frames through the global motion variable
G allow for more rapid, global motion between frames.

We use weak (but fast) skin, head and arm appearance
models to generate noisy likelihood maps for each part
within each frame. All spatial constraints are learned from
our training data in the form of absolute and relative spa-
tial “priors.” We model these as isotropic normal distri-
butions for efficient inference. We also take advantage of
this formulation to explicitly handle out-of-view parts with
a special () state, estimating its probability as an integral
over the portion of spatial constraints outside the frame. To
solve the tracking problem, we perform inference by ap-
proximately maximizing P(L, G|I) for the whole video us-
ing Gibbs sampling.

3. Results

To evaluate our approach, we manually annotated 2,400
randomly sampled frames with bounding boxes from 30
minutes of video and five different child-parent pairs. De-
pending on which body parts are in view, each frame has up
to five bounding boxes: two child hands, two parent hands,
and one parent face.

For each frame, our system predicts the location of each
of the five body parts, by either providing a coordinate or
indicating that it is outside the frame. Figure 4 shows some
sample frames, where rectangles depict the ground-truth
bounding boxes, and dots mark our predicted position. Part
identities are represented by color, so that dots inside boxes
of the same color indicate correct estimates. The first two
rows show perfect frames, while the last row shows errors.

We also quantitatively evaluate our system using three
different metrics: The overall prediction accuracy, the per-
centage of frames in which all predictions were correct, and
the disambiguation error rate. The last metric captures the
percentage of hands for which we fail to disambiguate be-
tween the observer’s hands and the partner’s hands.

Table 1 summarizes our results and compares them to
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Figure 3. Graphical depiction of our model for 2 frames, where
the bottom 5 nodes represent the locations of the head and hands
in one frame, and the top 5 nodes represent the locations in the
next frame. Between-frame links enforce temporal smoothness,
shift links model global shifts in the field of view, and in-frame
links constrain the spatial configuration of the body parts.
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Figure 4. Sample frames from our results, with rectangles showing ground truth bounding boxes and dots showing predicted part positions
(red = your head, blue = your left hand, green = your right hand, magenta = my left hand, cyan = my right hand). The first two rows show
our robustness with respect to partial occlusions and changes in hand configurations, while the bottom row shows failure cases.

Overall | % Perfect | Disambiguation
Method Accuracy | Frames Error Rate
random 17.0 0.1 95.1
random (skin) 27.3 43 72.0
skin clusters 58.1 14.4 36.0
our method 68.4 19.1 32.7

Table 1. Comparison of our model’s results to baselines, in terms
of overall accuracy, percentage of perfect frames, and hand disam-
biguation error rate. For more details, please refer to [8].

baselines of increasing complexity. Our full model outper-
forms all the baseline methods by more then 10 percentage
points for accuracy and also performs best in terms of per-
fect frames and hand disambiguation error.
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