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Abstract

Egocentric cameras are becoming more popular, intro-
ducing increasing volumes of video in which the biases and
framing of traditional photography are replaced with those
of natural viewing tendencies. This paradigm enables new
applications, including novel studies of social interaction
and human development. Recent work has focused on iden-
tifying the camera wearer’s hands as a first step towards
more complex analysis. In this paper, we study how to dis-
ambiguate and track not only the observer’s hands but also
those of social partners. We present a probabilistic frame-
work for modeling paired interactions that incorporates the
spatial, temporal, and appearance constraints inherent in
egocentric video. We test our approach on a dataset of over
30 minutes of video from six pairs of subjects.

1. Introduction

Head-mounted cameras capture video that is fundamen-
tally different from hand-held cameras, recording an ap-
proximation of a person’s field of view during everyday life.
This technology is creating new applications in areas like
life-logging [23], healthcare [5], and security [27]. In ad-
dition, head-mounted cameras are being used for psychol-
ogy research [1, 12] by recording fine-grained information
about people’s activities and interactions. However, these
applications create huge amounts of video, so automated
techniques are needed to process and understand them.

Hands are perhaps the most frequent objects in egocen-
tric video, and are arguably also the most important, since
they are the primary way that humans physically interact
with the world. In fact, most work in egocentric activity
recognition assumes that activities can be characterized by
the in-hand manipulation of certain objects [7, 19]. Other
work on egocentric hand detection is motivated by the idea
that hands are important for understanding complex object
manipulations, gestures, and motor skills [16, 17, 24, 32].

Figure 1. Overview of our paper. A mother and child play while
both wear head-mounted cameras. To help investigate how differ-
ent hands help capture the child’s attention, we study hand tracking
and disambiguation in egocentric video, and propose a probabilis-
tic model that incorporates appearance, spatial, and temporal cues.

This existing hand detection work assumes that only the
camera wearer’s hands are visible in the scene, even though
real-world egocentric video includes frequent interactions
with other people [8]. Recognizing gestures, handled ob-
jects, and activities in practice will thus require distinguish-
ing the camera owner’s hands from others that occur in the
scene. We are especially motivated by recent psychology
experiments that use head-mounted cameras to study how
young children and adults interact with one another, and
how children coordinate their hands, head turns, and gaze
in order to manipulate objects [1, 11, 12, 20]. In these ex-
periments, a parent and child play with toys on a table and
frequently point to, reach for, and exchange toys with their
hands (Figure 2). The child’s view is extremely dynamic:
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the hands of both the child and parent frequently disap-
pear and reappear or are partly occluded. Manually label-
ing hand positions in these large-scale datasets is slow and
tedious, so a main motivation of our work is to develop a
technique that can perform the labeling automatically.

In particular, we would like to detect and distinguish
between the left and right hands of the child (the camera
wearer), as well as the left and right hands of the parent
(Figure 1). Due to the hands’ dynamic appearance, frequent
occlusions, rapid and unpredictable camera motion (from
head turns), and frequent entering and exiting of the frame,
disambiguating based on appearance alone is difficult. Dis-
tinguishing one’s own hands from others is in itself an in-
teresting cognitive challenge, and how humans accomplish
this rapidly even in complex social interactions is unknown.

To overcome these challenges and accurately detect and
disambiguate hands, we propose a graphical model frame-
work that encodes key spatiotemporal constraints inherent
to the egocentric perspective. These constraints are quite
intuitive; for example, given that we see the scene through
the eyes of the child, we expect the child’s left hand to enter
the child’s view predominantly from the lower left and the
right hand to enter from the lower right. In addition to these
absolute spatial assumptions, one can also use relative spa-
tial statistics: we generally expect the child’s left hand to be
to the left of the right hand, and vice-versa. Similar assump-
tions can be made for the social partner (the parent). Since
the parent usually faces the egocentric observer, the parent’s
right hand usually occupies the left side of the child’s field
of view and the parent’s left hand is on the right.

We evaluate our framework on a collection of 20 parent-
child interaction videos constituting over 31 minutes of
video and thousands of labeled frames. Results show
the unified framework outperforms sensible baselines and
achieves about 70% performance overall (compared to
about a 17% baseline). We also tested a more consumer-
oriented application, with videos of interacting adults in
a naturalistic environment taken by Google Glass, and
achieve about 51% accuracy (versus about 15% baseline).

2. Related Work
Egocentric video is becoming a popular research topic

in computer vision, with papers recognizing activities [7, 8,
19, 22], events [15, 18, 25], and objects [9, 21]. Detecting
and tracking hands of the camera wearer has received spe-
cial attention. Ren and Gu [21] pose this as a figure-ground
segmentation problem, analyzing dense optical flow to par-
tition frames into hands (or held objects) with irregular flow
patterns, and background with coherent flow. Fathi et al. [9]
segment between hand and object areas based on color fea-
tures. Since the primary goal of these papers is to recognize
held objects, they assume a static and rigid scene (where op-
tical motion in the background can only be caused by head

Figure 2. Some sample images from the egocentric videos that
were used in our experiments. The child’s view is very dynamic;
hands come in and out of view or overlap very frequently.

movements). In contrast, our videos include a second per-
son who moves independently from the camera, such that
motion features alone cannot isolate hands.

Other work relies on color and shape features. Zariffa
and Popvic [32] perform hand segmentation in egocentric
video using pixelwise skin classifiers followed by shape-
based post-processing, while Serra et al. [24] find skin su-
perpixels using random forests. Li and Kitani [17] study
changing illumination in hand segmentation, and find that
a combination of color, texture and gradient features per-
forms best. Follow-up work by the same authors [16] pro-
poses model recommendation to pick the best detector for
each environment using scene-level features. Our videos
have relatively controlled lighting so we use a simple color-
based skin detector, although our framework can easily in-
corporate more advanced techniques.

Many papers have studied hand tracking in static cam-
eras [6]. Perhaps the papers most related to ours pose hand
tracking in probabilistic frameworks to model constraints
between frames of a video [26, 31], or between parts of the
hand within a single frame [13]. Sudderth et al. [28] track
hand poses using a Markov Random Field that models both
temporal constraints and spatial constraints. Our approach
is similar in that we use graphical models that combine evi-
dence within and across frames, but the details are quite dif-
ferent: we study a different problem (hand disambiguation)
with a completely different graphical model and a different
inference technique (sampling instead of BP), and we ex-
plicitly address the challenges of egocentric video by mod-
eling head motion (instead of assuming static cameras).

The above work either detects one or two hands in video
from a static camera, or detects the hands of the owner of
a first-person camera. Most of this work does not track or
disambiguate the hands. In contrast, we study hand tracking
of interacting people captured from head-mounted egocen-
tric video, in which we must disambiguate between up to



four moving hands that are regularly entering and exiting
the frame, with extreme, erratic camera motion.

3. Modeling Egocentric Interactions

Given an egocentric video (from a head-mounted cam-
era) of the interaction between two people, we would like
to estimate the locations of the observer’s hands, the other
person’s hands, and the other person’s head throughout the
video. This task is difficult because these parts frequently
enter and leave the frame, and there is erratic camera motion
caused by head motion of the person wearing the camera.

More formally, given a video sequence of n frames, each
with r × c pixels, our goal is to estimate the position of
each of a set of parts P in each frame. In this paper, we
consider five parts in particular, P = {yh, yl, yr,ml,mr},
corresponding to the other person’s head, hands (‘your
left/right’) and the camera wearer’s hands (‘my left/right’),
respectively. We denote the latent 2-D position of part
p ∈ P in frame i as Lip and define Li to be the full config-
uration of parts within the frame, Li = {Lip}p∈P . Because
of the dynamic nature of egocentric video, hands often en-
ter and exit the frame, due both to motion of the hands and
motion of the head-mounted camera. To address the possi-
ble absence of any given part, we augment the domain of
Lip with an additional state ∅ indicating that the part is not
visible in the frame, i.e. Lip ∈ {∅} ∪ ([1, r]× [1, c]).

In addition to part position, we also explicitly model
global motion caused by head movements by introducing
random variables G = (G1, . . . , Gn−1), where Gi is an
estimate of the two dimensional global coordinate shift be-
tween frame i and frame i + 1. In this way, we assume the
world has uniform depth such that a change of viewing an-
gle would have the same effect on all points in the 2-D pro-
jection of the environment. This assumption simplifies the
model and is reasonable given that the distances involved in
a paired interaction are relatively constrained.

We use a graphical model framework to model and esti-
mate the locations of parts across all video frames jointly.
The model uses head and hand appearance models to help
identify parts within an individual frame. It also incorpo-
rates two types of constraints: (1) intra-frame constraints
on spatial relationships between body parts, and (2) inter-
frame constraints between body parts, which enforce tem-
poral smoothness on part positions. A visualization of the
five-part model for a two-frame video is presented in Fig-
ure 3. The connections within a frame (in black) form a
complete graph over the five part nodes and capture the
pairwise correlations between spatial locations of the parts.
The green edges between each part and its corresponding
variable in the next frame enforce the temporal smooth-
ness constraint. Finally, the global shift variable is influ-
enced by all pairs of corresponding parts such that a similar
motion in all part pairs is likely to indicate a global shift.
Placing these (soft) constraints into an undirected graphi-
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Figure 3. Graphical depiction of our model for 2 frames, where
the bottom 5 nodes represent the locations of the head and hands
in one frame, and the top 5 nodes represent the locations in the
next frame. Between-frame links enforce temporal smoothness,
shift links model global shifts in the field of view, and in-frame
links constrain the spatial configuration of the body parts.

cal model yields a joint distribution over all the latent vari-
ables L = (L1, ..., Ln) and G, conditioned on the image
sequence I = (I1, ..., In),

P (L,G|I) ∝

n∏
i=1

P (Ii, Ii+1|Gi)
∏

(p,q)∈E

P (Lip|Liq)

∏
p∈P

P (Ii|Lip)P (Li+1
p |Lip, Gi)P (Lip)

 (1)

where I=(I1, ..., In) is the image sequence and E ⊂ P2 is
the set of undirected edges in the complete graph over P .

We can solve the part-tracking problem for an entire
video I by maximizing equation (1). Unfortunately, finding
the global maximum is intractable. We thus settle for ap-
proximate inference using Gibbs sampling. As we discuss
in Section 3.4, this avoids the need to compute or store the
full joint distribution because the sampling involves only
small neighborhoods of the graph. We now describe the
components of the model in more detail.

3.1. Pairwise Spatial Priors

In egocentric videos of interacting people, body parts
tend to have a distinct spatial relationship: the camera
owner’s hands are closer and thus lower in the frame, the
other person’s hands are further away and higher in the
frame, and the head tends to be in between and above the
hands. As is common in part-based models [4], we assume
the relative spatial distribution between each pair of parts is
Gaussian. The main complication in our problem is that we
need to model explicitly the possibility of a body part being
out of the field of view. To show how to do this, we start by
considering a 2-D isotropic Gaussian function,

fµ,Σ(x, y) = N (x;µ1,Σ11)N (y;µ2,Σ22),



parameterized by µ = [µ1 µ2]T and Σ = diag(Σ11,Σ22).
If this function represents a probability distribution over the
location of a given part, then calculating the probability that
the part is ‘out’ of a frame is equal to one minus the proba-
bility of being within the frame, 1−Fµ,Σ([1, c], [1, r]),with

Fµ,Σ ([x1, x2], [y1, y2]) =

x2∫
x1

y2∫
y1

fµ,Σ(x, y) dy dx (2)

= [Φ(x2;µ1,Σ11)− Φ(x1;µ1,Σ11)] ∗
[Φ(y2;µ2,Σ22)− Φ(y1;µ2,Σ22)] ,

where Φ(·) is the normal cumulative density function and
can be precomputed for efficient computation.

In-Frame Conditionals. Consider a pair of parts p, q ∈ P
(p 6= q) in frame i having positions Lip and Liq , respectively.
Based on training data, suppose we have an estimate of the
relative spatial relationship between these parts such that
Lip − Liq ∼ N (µqp,Σqp) for diagonal Σqp. We define the
conditional probability distribution between Lip and Liq as,

P (Lip|Liq)=



β : Liq=∅

1−Fµqp+Li
q,Σqp

([1, c],

[1, r]) : Lip=∅, Liq 6= ∅

Fµqp+Li
q,Σqp

([Lip,x, L
i
p,x + 1],

[Lip,y, L
i
p,y + 1]) : Lip, L

i
q 6=∅,

where β is a constant. Intuitively, this means that if part q
is outside the frame, then it does not constrain part p’s lo-
cation (the conditional probability distribution is uniform),
whereas if q is inside the frame, then p is either outside
(and the conditional probability is given by one minus the
probability of being inside the frame), or it is inside the
frame with a probability given by a Gaussian distribution.
If it were not for state ∅, our in-frame model would be
similar to models from part-based recognition [4, 10].

Between-Frame Conditionals. The inter-frame condition-
als impose temporal smoothness on part locations, connect-
ing together part p’s locationLi+1

p in frame i+1, its location
Lip in frame i, and the latent global shift Gi between frames
i and i + 1 (due to head motion). We assume that if the
part is within the image in both frames i and i+ 1, then Lip
and Li+1

p are related by a Gaussian distribution with diag-
onal Σp around the location predicted by the global shift,
Li+1
p −Lip ∼ N (Gi,Σp). Including the possibility of parts

entering or leaving the frame, the full conditional probabil-
ity is similar to the above in-frame distribution,

P (Li+1
p , Gi|Lip)=



α :Lip, L
i+1
p =∅

1−α
rc :Lip=∅,Li+1

p 6=∅

1−Fµi,Σp
([1, c], [1, r]) :Lip 6=∅,Li+1

p =∅

Fµi,Σp([L
i+1
p,x,L

i+1
p,x+1],

[Li+1
p,y ,L

i+1
p,y +1]) :Lip,L

i+1
p 6=∅,

where µi = Lip + Gi and α is a constant. This conditional
encodes the intuition that if a part is outside the image in
one frame, it is outside the next frame with probability α or
is uniformly distributed at a pixel in the frame; on the other
hand, if a part is in the image in one frame, its probability
distribution over pixels in the next frame is Gaussian, or it
is outside the frame with probability one minus the integral
over all pixel locations. This formulation encourages parts
to stay at roughly the same position from one frame to the
next, but allows for large jumps due to global motion if the
jump is observed for many of the parts.

3.2. Absolute Spatial Priors

It is also helpful to add absolute spatial priors to encode
implicit geometric biases of the egocentric viewpoint,
like the fact that humans’ tendency to shift their gaze to
important objects in a scene means that faces are often in
the upper-center part of the view. We model these biases as
Gaussian distributions on absolute part location,

P (Lip)=

{
1− Fµpp,Σpp

([1, c], [1, r]) : Lip = ∅

Fµpp,Σpp
([Lip,x, L

i
p,x + 1], [Lip,y, L

i
p,y + 1]) : Lip 6= ∅,

with mean absolute position µpp and diagonal covariance
matrix Σpp for each part p.

3.3. Full Conditionals

We use Gibbs sampling to perform inference, as de-
scribed in the next section. To do this, we need to sample
each random variable from its full conditional. Fortunately,
because of the independence assumptions of our model, the
full conditionals can be written and computed easily.

Part Nodes. We begin by deriving the conditional distri-
bution of a part node given the rest of the variables in the
graph. From Equation (1), we can compute the full condi-
tional up to a proportionality constant,

P (Lip|G,L, I) ∝ P (Li+1
p , Gi|Liyl)P (Li−1

p , Gi−1|Lip)

∗ P (Ii|Lip)P (Lip)
∏

q∈P−{p}

P (Liq|Lip), (3)

where P (Ii|Lip) is produced by an appearance model for p,
which we define in Section 4. For instance, in the 5-part
model we study here, the Markov blanket for Liyl is shown
in the left panel of Figure 4, and the conditional for Liyl is

P (Liyl|G,L, I) ∝ P (Li+1
yl , Gi|Liyl)P (Li−1

yl , Gi−1|Liyl)

∗ P (Liyh|Liyl)P (Liyr|Liyl)P (Liml|Liyl)
∗ P (Limr|Liyl)P (Ii|Liyl)P (Liyl). (4)

Since the state space is discrete, the normalization constant
is not needed for sampling, as it can be computed at runtime.



Gi

Gi−1

Liyl

Liyr

Liml

Limr

Liyh

Li+1
yl

Li+1
yl

Gi

Liyr Liml Limr Liyh Liyl

Li+1
yr Li+1

ml Li+1
mr Li+1

yh Li+1
yl

Figure 4. Components of the full conditional in our 5-part case, for
(left) part node Liyl, and (right) shift node Gi.

Shift Nodes. The full conditional of a shift nodeGi can also
be written as a product of its neighbors in the graph,

P (Gi|G,L, I)∝P (Ii, Ii+1|Gi)
∏
p∈P

P (Li+1
p , Gi|Lip), (5)

which in the 5-part case we consider here (and as illustrated
in the right panel of Figure 4) becomes

P (Gi|G,L, I) ∝ P (Ii, Ii+1|Gi)P (Li+1
yh , Gi|Liyh)

∗ P (Li+1
yl , Gi|Liyl)P (Li+1

yr , Gi|Liyr)

∗ P (Li+1
mr , G

i|Limr)P (Li+1
ml , G

i|Liml). (6)

This product has several intuitive properties. If there is
disagreement between the relative movements of parts, then
the overall distribution is diffuse and the likelihood term
dominates. If parts are in agreement, there is a high peak.
We require that the domain of Gi be a finite subset of the
reals so we can sample without the normalization constant,
avoiding a costly integral. The domain could be further con-
strained for specific applications (e.g. based on expected
rate of movement). The likelihood P (Ii, Ii+1|Gi) could
also be application-dependent; here we use a normal distri-
bution fit to the optical flow between frames i and i+1 [29].

3.4. Inference

We use Gibbs sampling [2] to perform inference on our
model. Gibbs is a Markov-Chain Monte-Carlo method that
generates samples from a full joint distribution over multi-
ple random variables without a representation of the distri-
bution (parametric or otherwise). In the limit, these samples
form an accurate representation of the true distribution. We
obtain a solution from these samples as follows. If for any
given frame, the majority of samples for a given part are in
the ∅ state, we label the part as “out” of the frame. Other-
wise, we take the median position over the in-frame sam-
ples. In our experiments, just 50 samples provided good
solutions.

4. Specializing to Child-Parent Joint Activity
Our hand-tracking approach could in principle be ap-

plied to any egocentric video data, with the various param-

eters and distributions set to customize it to a specific ap-
plication. As mentioned in Section 3.3, one can apply any
object model to generate the distributions for the per-part
image likelihood terms P (Ii|Lip) for each part location p
in frame i. Since our context is rather controlled, we use
features to demonstrate the effectiveness of our methodol-
ogy. In particular, we first detect skin pixel regions and use
a distribution of P (Ii|Lip) that is zero unless Lip is on a skin
pixel, and otherwise is proportional to the likelihood that an
image patch around Lip ‘looks like’ part p, described below.

Skin Model. As our data only contains indoor footage with
controlled lighting, we found that a color-based approach
was sufficient for pixel-level skin detection [14]. To sup-
press occasional false detections around the red (skin-like)
toys, we tuned our skin classifier for each individual subject.
A human labeled the skin regions of 20 random frames from
each subject’s video. We then learn non-parametric skin and
background models in YUV color space (discarding the lu-
minance plane Y). To detect skin in unlabeled images, we
compute the log odds of each pixel under these models as,

log
P (U, V |skin)

P (U, V |background)
,

and threshold the output value to create a binary skin mask.
We then apply a median filter to suppress noise.

Face Model. We used the Viola & Jones [30] face detector
to compute the face likelihood distribution, P (Ii|Liyh). We
used a simple formulation in which pixels inside a detected
face box are assigned high likelihoods and pixels outside
are assigned a low (non-zero) likelihood. We trained the
detector on a small set of hand-labeled faces from our data.

‘Your Hand’ Model. Distinguishing hands is difficult due to
their appearance variance caused by hands’ deformable na-
ture as well as scale and lighting. We implemented a simple
model that takes advantage of our lab setting in which the
edge density of the other person’s sleeves is high compared
to the background. We apply an edge detector to each im-
age, blur the output, apply a threshold to detect arm regions,
and find skin patches that are adjacent to these regions. Sup-
pose a skin patch and arm region intersect at a point u. We
calculate the longest possible straight line through u inter-
secting the set of candidate arm pixels (i.e. the diameter of
the arm pixel region through u). The direction and length
of this line are a measure of the arm direction and length, so
we use them to set the ‘your hand’ likelihoods, P (Ii|Liyl)
and P (Ii|Liyr), based on thresholding the line length and
direction. For instance, a skin patch with a long, upwards
line is likely to belong to the partner’s hand.

Spatial Priors. Finally, we learn the Gaussian parame-
ters of the relative and absolute spatial priors, P (Lip) and
P (Lip|Liq), from a small set of labeled training frames.



5. Experiments

We collected two datasets: video from a lab setting with
interacting children and parents, and from a naturalistic set-
ting with two adults. Our main motivation in this paper is
to label the lab data automatically, which will be eventually
used to study how interaction affects children’s learning. In
these experiments, a child and parent sit at a table and face
one another with each wearing head-mounted cameras (top
of Figure 1). Parents were told to engage their child with the
three toys on the table and interact as naturally as possible.
To try to limit distractions, the walls of the lab are colored
white, and participants wear white coats.

We use the video from the child’s camera, so that the
other person in view is always the adult. The video is cap-
tured at 30Hz with 480×720 pixel resolution. Some sample
frames are shown in Figure 2. We use video data from 5 dif-
ferent parent-child dyads (where toddlers’ mean age was 19
months). Each of the 5 play sessions consist of 4 trials, with
toys replaced between trials to keep the children interested.
The trials had an average length of 1.5 minutes, leading to a
total of 20 videos containing 56,535 frames (about 31 min-
utes) of social interaction from the children’s perspective.

Our second dataset was designed to test our model in
more naturalistic settings. We used Google Glass to record
a small set of egocentric videos containing two adults en-
gaged in three kinds of social interactions: playing cards,
playing tic-tac-toe, and solving a 3-D puzzle. Each video is
90 seconds long, for a total of 4.5 minutes (8,100 frames),
and was captured at 30Hz with a resolution of 1280×720.

5.1. Evaluation

To evaluate our approach, we manually annotated 2,400
random frames (around 120 per trial) from the lab dataset,
and 300 frames (100 per video) from our Google Glass
dataset, with bounding boxes. This is about one frame for
every second of video. Depending on which body parts are
in view, each frame has up to 5 bounding boxes: two ob-
server’s hands, two partner’s hands, and one partner face.

Detection Accuracy. For each frame, our system estimates
the location of each of the 5 body parts, by either provid-
ing a coordinate or indicating that it is outside the frame.
We evaluate the accuracy of our method as the fraction of
true positives (i.e. cases where we correctly estimate a po-
sition inside the ground-truth bounding box) and true nega-
tives (i.e. where we correctly predict the part to be outside
the frame). We also evaluate the percentage of “perfect”
frames, those in which all five parts are predicted correctly.

Hand Disambiguation Error Rate. We are particularly in-
terested in errors made when disambiguating the observer’s
hands from the partner’s hands, so we measure this explic-
itly. We consider a ground-truth hand to be a disambigua-

tion error if it is either unlabeled, labeled as the wrong per-
son’s hand, or is marked with multiple labels of different
people (falsely estimating that hands overlap). The disam-
biguation error rate is the total number of incorrectly disam-
biguated hands over the total number of hands in all frames.

5.2. Results

We first present qualitative results on the lab dataset. Fig-
ure 5 shows some sample frames, where rectangles depict
the ground-truth bounding boxes, and dots mark our pre-
dicted position. Part identities are represented by color, so
that dots inside boxes of the same color indicate correct es-
timates. The first two rows show perfect frames, while the
last row shows errors. Common failures include incorrectly
estimating a hand to be out of frame (e.g. leftmost image)
or falsely estimating overlapping hands. This can be caused
by hands that are closer to the observer than expected and
thus too big (e.g. in the middle two images), or because one
hand is farther away from the other than usual (e.g. wrong
prediction for ‘my left hand’ in the right image). We also
show results for the naturalistic videos in Figure 6.

Quantitative Evaluation. We present detailed quantitative
results in Table 1. Our overall detection accuracy across the
five subjects of the lab data set is 68.4%. The technique
generalized well between different subjects, as evidenced
by a low standard deviation across videos (σ = 3.0). Accu-
racies between different hands are also fairly stable, ranging
from 61.2% for ‘my left hand’ to 70.7% for ‘my right hand’.
Overall, our approach perfectly predicted 19.1% of frames,
and for Subject 3 achieved a 24.7% perfect detection rate.

As expected, accuracy was lower for the naturalistic
videos, at 50.7% overall. This drop in accuracy is caused by
two factors. First, we do not use a model for the partner’s
hand (the edge based method described in Section 4 does
not work well here). Second, the simple pixel-wise color-
based skin detection suffers from illumination changes in
the natural environment, as evidenced by our near-perfect
skin detection accuracy on the lab videos (with 97% of
detected skin pixels located inside ground-truth bounding
boxes), but only 70% for the natural videos. Interestingly,
we can still retain a relatively low disambiguation error rate
in the naturalistic videos (35.6% versus 32.7%), showing
that our model can compensate for noisy likelihoods.

Although our main purpose is to detect hands, the tem-
poral and spatial constraints in our model also improve face
detection. Table 1 compares the head-detection accuracy
of our model to that of the raw Viola-Jones detector (col-
umn headVJ). We achieve about a 10-percentage-point in-
crease for the lab dataset, and an over 17-percentage-point
improvement on the Google Glass videos.

Comparing to Baselines. We compared our model to three
baselines of increasing complexity. First, we tried a sim-



Overall Observer Partner % Perfect Disambiguation
Accuracy right hand left hand right hand left hand head headVJ Frames Error Rate

Subject 1 64.1 50.3 60.2 68.0 54.2 87.7 86.2 14.8 37.8
Subject 2 72.6 78.5 63.3 63.8 79.7 77.5 55.5 22.8 27.4
Subject 3 70.1 64.2 66.7 60.5 68.8 90.0 85.5 24.7 34.5
Subject 4 67.3 88.0 54.7 59.5 59.3 75.2 66.0 15.5 33.1
Subject 5 68.1 72.5 61.0 66.2 60.5 80.2 69.0 17.7 30.5
Average 68.4 70.7 61.2 63.6 64.5 82.1 72.4 19.1 32.7

Natural 50.7 54.3 18.7 73.3 49.3 57.7 40.3 9.0 35.6

Table 1. Detection accuracies of our approach, as well as a breakdown into different hands. We also compare our head-detection accuracy
with the accuracy of the raw Viola-Jones detector (headVJ). The second to last column shows the percentage of frames in which all five
predictions were correct and the last column shows the error we made when differentiating the observer’s hands and the partner’s hands.

ple random predictor: for every part in every frame, we first
flip a coin to decide whether it is in the frame or not, and
if it is in the frame, we assign it a random position. Sec-
ond, we added the skin likelihood by repeating the same
process but limiting the space of possible positions to be in
skin patches. Finally, we build a more sensible baseline,
clustering the detected skin pixels into hand-sized patches
using Mean Shift [3]. Then, we greedily assign each part
the position of the closest cluster centroid based on distance
between centroid and part-wise absolute spatial priors.

The results of these baselines and our method are com-
pared in Table 2. The two random baselines perform poorly,
with accuracies of 17.0% and 27.3%, respectively. The third
method using clustering and distances to centroids performs
better at 58.1%, but our approach still beats it with 68.4%
accuracy. We also tested a simplified version of our model
in which the in-frame and between-frame links were re-
moved, so that only absolute spatial priors and likelihoods
are used. This achieved 59.1% accuracy, comparable to the
third baseline (which similarly does not incorporate tempo-
ral or relative spatial constraints). Our full model outper-
forms all the baseline methods by more then 10 percentage
points for accuracy and also performs best in terms of per-
fect frames and hand disambiguation error.

Finally, we compare the performance of our method and
the third baseline on our naturalistic videos. The baseline
method suffers drastically from the noisy skin detections
and does not predict a single frame perfectly. Our method
does much better at overcoming weak object models, per-
fectly predicting almost 10% of frames, showing that it has
the potential to work well in less constrained scenarios.

6. Summary and Conclusion
We presented a probabilistic model for tracking hands

in paired interaction and demonstrated its effectiveness us-
ing simple features on egocentric video. In future work,
we would like to extend our experiments to more natural
settings by collecting a more extensive paired-interaction
dataset and by exploring stronger deformable object mod-
els (possibly solving jointly for the appropriate appearance

Method Overall % Perfect Disambiguation
Accuracy Frames Error Rate

Lab Videos

random 17.0 0.1 95.1
random (skin) 27.3 4.3 72.0
skin clusters 58.1 14.4 36.0
ours (likelihood + spatial prior) 59.1 9.2 44.5
our method (full) 68.4 19.1 32.7

Naturalistic Videos

skin clusters 39.2 0.0 65.4
our method 50.7 9.0 35.6

Table 2. Comparison of our model’s results to baselines, in terms
of overall accuracy, percentage of perfect frames, and hand disam-
biguation error rate (see text).

Figure 6. Sample results for naturalistic video, in which two peo-
ple played cards (top) and tic-tac-toe and puzzles (bottom), while
one wore Google Glass. (See Fig. 5 caption for color legend.)

model and part position). We also note that our work could
inform and be informed by cues from action-recognition: a
hierarchical framework in which actions are treated as latent
variables is worth exploring.
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Figure 5. Sample frames from our results, with rectangles showing ground truth bounding boxes and dots showing predicted part positions
(red = your head, blue = your left hand, green = your right hand, magenta = my left hand, cyan = my right hand). The first two rows show
our robustness with respect to partial occlusions and changes in hand configurations, while the bottom row shows failure cases.
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